|mplementing a Similar Messages Search Functionin an
IMAP Mail Server

Arto Terés <arto.teras@hip.fi>
Helsinki Institute of Physics Technology Program

September 30, 2002

Abstract

This paper presents a prototype implementation of a mail server featuring a content-based message
search function. The user can choose an interesting email and ask the server to retrieve similar ones.
Communication between the client and the server is implemented via an additional command in the
IMAP protocol and requires minimal changes to the client software.

Contents

1 Introduction 3

2 Choosing the Approach 3
2.1 Architecture L
2.2 Software Packages

3 User Interface 5
3.1 CurrentImplementation.
3.2 ldeasfor Improvement

4 Implementation Details 6
4.1 Extendingthe IMAP Protocol

4.2 Combining the Software Components 7

5 Analyzing the Textual Data 8

5.1 Feature Extraction. e 8

5.2 Pruning, Weighting and Similarity Criteria 8

5.3 Email SpecificIssues 9

5.3.1 Encodingsand Attachments 9

5.3.2 Multiple Languages and Character Sets 9

5.3.3 Quotes, Signatures and Other RedundantData 10

6 System Performance 10

6.1 TestSets e 10

6.2 Relevance of the Retrieved Documents 11

6.3 Running TiMe L 12

6.4 Optimization Possibilities Using a Self-OrganizingMap 13

7 Conclusionsand Future Work 14

1 Introduction

People who receive a lot of email usually have large archives of messages distributed in several folders.
Sometimes when receiving a new message the user vaguely remembers that he has saved some information
about the same topic earlier but cannot remember the folder and/or author. In this case it would be useful
to have the computer automatically retrieve similar documents to the current one in hand.

This document describes a “search for similar messages” extension to an IMAP mail server. All the analysis
functionality is implemented at the server so the modifications required to the client software are small.
Currently the system accepts only another email message as the search key, but it would be easy to add a
function where the user could fill in keywords and the system would then fetch the best matching messages.

This research project was related to the Datagrid project in the Helsinki Institute of Physics Technology
Program [1]. It is also submitted as the project work of the course T-61.195 Information Science,
special assignment I at the Helsinki University of Technology. The supervisors of the project have
been M.Sc. Matti Heikkurinen from Helsinki Institute of Physics and D.Sc.(Tech.) Mikko Kurimo from
Helsinki University of Technology, Laboratory of Computer and Information Science.

2 Choosing the Approach

2.1 Architecture

When extending a widely used and standardized system such as Internet email, it is important that the new
features don’t break any existing functionality. Because many people are already very accustomed to their
favorite email client it would also be nice that the new features could be easily added to several clients.

Currently there are mainly three methods to read email. The messages can either reside on the same
computer as the client software or on a server, which further can use either the POP [2] or IMAP [3]
protocol®. The IMAP protocol, optionally secured by SSL, has become the most common method in use
today. It allows keeping the messages on a server in a folder hierarchy chosen by the user, but many users
also copy their email archives on their local workstation. Finally, the format of the messages themselves
can be either strictly plain text [4] or use MIME extensions [5].

Three different system architectures were considered.

1. Both the classification and the messages reside on a server. The client program uses a simple com-
mand to ask for similar messages from the server.

2. The classification is done on a server but the similarity data is added as extra headers (so called X-
headers) to the email message. In this case the messages can be left either at the server or downloaded
at the client but the client is responsible for interpreting the data in the extra headers.

3. Both the classification functionality and the messages are at the client.

The second and third option don’t require any extensions to protocols in use today. Unfortunately they
both have practical disadvantages. If all the classification functionality is at the client (option 3), it easily
becomes closely tied to one particular client software and porting it to others would be a big task. If the
classification information is in the headers (option 2) the system becomes either rather unflexible (e.g. a
fixed list of message numbers in one extra header) or a considerable amount of interpretation functionality
needs to be implemented at the client.

Finally option 1 was chosen. The advantage of this approach is that few modifications are needed in the
client software. Communication between the client and the server was decided to be implemented as an
extension to the IMAP protocol as allowed in section 6.5.1 in the IMAP specification [3].

1The messages can be either in standard mailbox or maildir format or a proprietary format of the client software.

2Email services with a web interface can still be considered as another category. Some of them use IMAP internally, some have
their own databases and protocols, but in all cases the implementation is completely at the server and the client software (web browser)
does not need to be modified when new functionality is added.

2.2 Software Packages

To avoid license fees, to make development easier and to encourage further development it was decided
to use existing open source [6] components as much as possible. The software packages chosen for the
project are introduced below.

DBMAIL [7] is a group of programs that enable storing and retrieving mail messages from a SQL database
(currently MySQL and PostgreSQL support implemented). In particular, it can be used as an IMAP
server. There are other IMAP servers which are more widely used but DBMAIL was chosen because
the database backend allows implementing complex features efficiently. The development commu-
nity also seems to be quite active. DBMAIL is written in C and licensed under the GNU General
Public License [8].

Bow [9] is a library for writing statistical text analysis, language modeling and information retrieval
programs. It can among other things be used for tokenizing text files, building a vocabulary and
calculating document and word vectors based on the data. The approach is statistical — Bow does
not have syntactical or semantical analysis functionality. Bow is written in C and licensed under the
GNU Library General Public License [10] (version 2).

Mutt [11] is a small but powerful text-based email client. 1t was chosen for this project mainly because
the source code is easy to understand and extend. Mutt is written in C and licensed under the GNU
General Public License [8].

Two tools for constructing self-organizing maps (SOM) [12] were used when analyzing the results and
evaluating optimization possibilities.

SOM Toolbox [13] is a function package for Matlab [14] implementing SOM algorithm. It also contains
a rich set of visualization capabilities and various helper functions. SOM Toolbox is written in the
Matlab language and licensed under the GNU General Public License® [8].

SOM_PAK [15] is a library which implements the self-organizing map (SOM) algorithm and various
helper functions. Self organizing maps can be useful for automatic classification and visualization
of various types of data, including text. SOM_PAK is written in C and the license allows free use for
research purposes only.

In addition to the tools chosen, several other interesting projects and software packages were found during
the work. Some of them are briefly described here because they may be useful for future research related
to emails and language analysis.

MDV [16] is a distributed, XML-based knowledge management platform developed at the Helsinki In-
stitute of Physics. Initially it was planned to use MDV as the basis for the system and integrate the
new feature in the email component of MDV. Later it was decided not to use it for the first prototype
because MDV itself is currently in heavy development. The functionality may still be added to MDV
later. MDV is written in Java and licensed under the BSD License [17] (without the advertisement
clause).

CMU-Cambridge Statistical Language Modeling toolkit [18] is a suite of UNIX software tools to facilitate
the construction and testing of statistical language models. It was one candidate to be used in this
project but at the end Bow [9] seemed more suitable. The CMU-Cambridge toolkit is written in C
and the license allows free use for research purposes only.

Gate [19] is an XML-based framework for processing human languages. It seems to have a lot of func-
tionality and good documentation, but the emphasis is on syntactic analysis while in this project the
approach is statistical. Gate is written in Java and licensed under the GNU Library General Public
License [10].

3The toolbox requires Matlab so one must have a Matlab license to be able to use it.

Ifile [20] is a mail filtering system based on the Naive Bayes algorithm. It forms classes based on the
contents of messages the user has already saved in different folders and suggests the best matching
class for a new message. Ifile can also be useful when trying to manage large email archives, but the
approach is different than the one described in this document. Ifile is written in C and licensed under
the GNU General Public License [8].

OpenNLP [21] is an organizational center for open source projects related to natural language processing.
It is also a project to develop Java interfaces and XML schemas for standardizing natural language
software components and data. It consists of several packages which may be useful for various
language processing tasks. Most of them are written in Java.

WEBSOM [22] is a research project to organize and visualize various documents using a self-organizing
map. It has been used to form topic maps of news bulletins, Usenet newsgroup articles and patent ab-
stracts. WEBSOM has been developed in the Information Science Laboratory at Helsinki University
of Technology and it is partly based on SOM_PAK. The source code is not publicly available.

3 User Interface

3.1 Current Implementation

In the current implementation the interface is very simple (figure 1). The user can navigate in his mail
folders as usual and when he finds an interesting message he can search for similar ones by pressing the
S key. The system asks how many messages the user would like to see before sending the request to the
server. The resulting list looks like a regular folder which is organized so that the most similar messages
appear at the top of the list.

(=
B
x

Feb 28 Mandrake Linux (165) MOKSA-200Z:017 - php update
Feb 28 Mandrake Linux 161) MDKSA-Z00Z:018 - cyrus-sasl update
Feb Z% Alex Hernandez 226) Cobalt-RAQ-4-BugsiWulnerabilities
Feb 28 Jon Snyder 68) DoS on HF ProCurve 4000M switch (possibly
Mar 01 EnGarde Secure 125) [ESA-20020301-005] ‘apache’ (mod_ssl) ses
136) [ESA-Z00Z0301-006] 'php, mod_php' MIME pa
43) A0L Instant Messenger Servers Patched and
7) Dpen Security Testing Meth 2.0 released

Mar 01 EnGarde Secure
Mar 01 Brendan Butts
Mar 01 pete

erflow (fix availablel
pcmillerelByshoo.com,
97) LIS SMTP component allows mail relaying v

({

(

(

(

{

(

(- -
Mar 01 Ben Laurie = pache -5 buffer o
Mar 01 Sym Security { 57) Re: "Peter Miller”
Mar 01 Todd Sabin (
Mar 04 Toni Lassila (
Todd Sabin { 35)
Mar 01 George Lewis (66) [matt@zope.com: [Zope-Annce] Zope Hotfix
Mar 01 Dragos Ruiu (987) mutants! - spp_fnord.c (It can see the FN
Mar 02 Agricola { 13) Phorum Discussion Board Security Bug (Ema
Mar 02 iphantomiBweb.d (163) Denial of Service in Sphereserver
Mar 0OZ §omel { 33) RealFPlayer bug
Mar 03 Michiel Heijkoo (
Mar 04 obscure E

(
{

Mar 04 bugtrag4ZBmyrea
Mar 05 Jenny Holmberg

230 Mar 03 Tom Lilder 25) iBuyS store hole
ficelecting 20 messages simllar to message 216...'

Figure 1: Choosing an interesting message and searching for similar ones.

~y
[
L=1
PR T E T E T E L ETE LI EEXTETET
=
]
3
L=
B

The interface for the administrator is a command-line program called dbmai I-organize (figure 2) which
calculates the classification data. The program accepts a few parameters to control exclusion of very rare
and too common words from the vocabulary. It is naturally possible to run the program automatically in
desired intervals (using cron) but currently the system is static: when a new mail arrives a word vector is
not calculated for it automatically. This would not be difficult to add, but a full readaptation of vocabulary
and weights should still be done sometimes. It would also be easy to add more options and methods, some
are already implemented in the Bow library. This could be a good topic for further research.

—————————— Some final statistics ---——---—-

Total number of mails: 6000

Total number of parts: 6379

Parts with unknown encoding: 99

Parts with known but unsupported encoding: 127
Parts with unknoun content type: Z31

Parts with known but unsupported content type: 92
Parts with unknown charset: S41

Parts with known but unsupported charset: 0

Parts valid for processing: S4Z3

Total bytes of contents (headers excluded): 22020574
Total bytes valid for processing: 9435012

Total mails valid for processing: S274

Total number of words: 1152876

Total number of different words: 89085

Total number of different words after pruning: 43939

Time building the vocabulary (userselapsed): 28.Z70 7 75.404

Time pruning the vocabulary (user/elapsed): 0.190 / 0.195

Time building the word wvectors (user/elapsed): 30.450 / 66.790

ime weighting and normalizing the word vectors (user/elapsed): 2.220 / 3.608
ime storing the information in the database (user/elapsed): 3.940 / 48.783

rtofpc?l:~/devel /domails i

Figure 2: Statistics screen after running the dbmai l-organize program

3.2 ldeas for Improvement

There are many possible improvements which could make the system better. It would be nice to highlight
the matching words in the messages and provide the user a possibility to emphasize certain words or topic in
a subsequent search. Placing the messages on a visual map such as the one in WEBSOM [22] could help to
navigate in the archive. Time scale could also be considered: if there is a group of similar messages closely
related to each other in time, the user would probably want to see that as a group. When an interesting
message is found as the result of a search it should be possible to retrieve the whole thread to take a closer
look at the discussion.

It would be easy and probably useful to add a function where the user would supply the keywords instead of
choosing an existing message as the key of the search. The IMAP protocol already has a search command
but it is limited to the currently selected mailbox and does not use any weighting to retrieve the best
matching messages.

The user should have some options to filter the messages on the similarity list, for example asking only for
messages from a certain author or excluding one author. He could also have more control for the criteria
of similarity. However, all these should be considered carefully as too many options are only confusing to
most people. The system should be able to retrieve relevant documents with minimal effort from the user.

4 Implementation Details

4.1 Extending the IMAP Protocol

IMAP protocol specification [3] provides a uniform way to add experimental commands which are not part
of the standard protocol. Any command prefixed with an X is considered experimental and the arguments
for such commands are user defined. The client can query the server about special features using the
CAPABILITY command.

The search for similar messages is provided by a very simple command XSIMILAR which takes two argu-
ments: number of the message which is used as the search key and another number which tells how many
similar messages the client wants to get. The message number is relative to the current mailbox but the
search is performed across all the folders of the user.

The response for the XSIMILAR command is similar to commands opening a mailbox (or a folder), e.g. the
SELECT command. The idea is to return the list of similar messages to the client exactly as it were a normal

IMAP mailbox even though it is not a physical folder on the server. The server internally handles the list as
a virtual mailbox so that the client may normally fetch attributes and the contents of the messages by using
the relative numbers in the mailbox.

This approach requires only minor changes in the client software. However, it must be admitted that the
XSIMILAR command does not fit seamlessly in the IMAP protocol state machine model. Normally the
client is responsible for closing a mailbox before opening a new one — here the old mailbox is implicitly
closed because a new one is returned. Also, as the mailbox is virtual it just silently disappears when the
client closes it and opens another one.

The main problem is that that the messages may perfectly well be from several different real mailboxes.
Therefore one cannot just return a list of message numbers inside the currently selected mailbox. It would
be possible to return a list of message unique identifier numbers, but then it would be necessary to define
new special commands or redefine some exisiting commands like UID FETCH to retrieve messages globally
and not just from the current mailbox. This would break the standard.

Virtual mailboxes also pose semantic problems. If the user would like to edit message flags or delete a
message, should it be done even though the message physically resides in another mailbox? A simple
solution used in this implementation is to deny modifications by returning the similar messages list as
read-only.

It might be useful to extend the XSIMILAR syntax to provide more detailed control and additional features.
For example, currently there is no information about the criteria which messages are considered similar to
each other. The command could also accept a list of messages as the source and provide a possibility to
limit the result list with arguments identical to the SEARCH command.

4.2 Combining the Software Components

The main task was to extend DBMALIL so that it would extract the vocabulary and necessary statistics from
the emails and calculate a word vector for each message. Most of the needed functionality was already
present in the Bow library but putting it all together required a significant amount of glue code. Some
examples:

e Storing and retrieving the data structures used by Bow to/from the DBMAIL database (MySQL [23]
was used as the backend in this project)

e Maintaining a mapping between Bow document index and the email message identifiers in DBMAIL

e Retrieving the messages from database and combining all the parts of each message as one document
suitable for the Bow lexer

o Filtering out binary attachments, recognizing various character sets and encodings and performing
necessary conversions

e Adding statistics and debugging functions

Sometimes the “way of doing things” in Bow and DBMAIL did not match very well, but having the source
code available helped in many cases. It also made possible to fix a couple of bugs which were encountered
during development. Gathering various statistics about messages during parsing and conversions proved
also to be a good idea — it was not only useful in the analysis at the end but also during development.

Organizing emails on the server is handled by a new program called dbmail-organize, which the ad-
ministrator must run from the command line. It fetches the messages from the DBMAIL database, calls
Bow functions to form the vocabulary and word vectors and then stores them in the database. The program
offers a few options to exclude the most common and rarest words from the vocabulary. Naturally each
user account has its own vocabulary and word vector data.

The IMAP server is implemented by dbmai I-imapd which was extended to understand the new XSIMILAR
command. When the client searches for similar messages for the first time, the server reads the vocabulary

and word vector info to be cached in the memory for the duration of the connection. The actual search is
currently implemented in a brute force manner so that it makes a pass through all the word vectors to find
the best matching ones.

Adding the new command to Mutt was simple and took only about one working day. The modifications
should be minor to almost any mail client, but because they include adding a new command to the IMAP
protocol the changes may go deep in the library code. For example many popular Web based mail clients
call an IMAP API provided by PHP. Therefore one would first have to modify PHP, compile the web server
(e.g. Apache) with the modified PHP and then add the new function call to the actual mail client.

The SOM Toolbox and SOM_PAK were used only for analysis purposes and it didn’t require any modifi-
cations.

The versions of software were primarily the newest available official releases: Bow version 1.0, Mutt ver-
sion 1.4, SOM Toolbox version 2.0beta, SOM_PAK version 3.1 and MySQL version 3.23. For DBMAIL
a direct copy of the cvs source tree on July 19 was chosen because it contained some important database-
related optimizations which were not present in the latest version available on the DBMAIL home page
(1.0rc3).

To get more detailed information about the changes see the source code and the comments there.

5 Analyzing the Textual Data

Natural language processing has been a topic of intensive research for decades. Many syntactic analysis
algorithms and other tools have been produced but automatic processing of language semantics is a very
hard problem and an universal solution doesn’t exist. A good overview of the current state of the field and
descriptions of the most common algorithms can be found in the book Speech and Language Processing
by Jurafsky and Martin [24].

5.1 Feature Extraction

Choosing a good set of features is essential in any classification task. The best features for email messages
would be concepts and keywords of the topics which the messages are about. Unfortunately this would
require either a lot of time-consuming manual interaction with the user or complicated analysis of the
semantics of the text.

This system uses a “bag of words” method in which the words in messages are directly used as features.
This approach was chosen because it is simple but still very popular in natural language processing. Each
message is transformed into a word vector which contains one entry for each word in the vocabulary
collected from all the messages of the user. Only the contents of the messages is considered: the author,
subject, date and other header fields do not affect the result.

Bigrams (two consecutive words) and trigrams (three consecutive words) are also interesting as features.
As there are a very large number of different bigrams — and even more trigrams — using all them would
not probably give good results. Instead trying to pick only especially interesting bigrams (e.g. first letters
capitalized in both words) could be a better approach.

5.2 Pruning, Weighting and Similarity Criteria

If all the words are counted, the vocabulary and consequently the dimension of the word vectors become
large. Therefore the most common and rarest words are often excluded. Finding a good balance in this
area is difficult. Many rare words are just typing errors or fancy expressions which can be found in totally
unrelated messages, but some are the most important keywords of the data.

The implementation accepts a few command line switches to control the pruning of the vocabulary during
the calculation process. In the majority of tests rather conservative settings were used, skipping words that
can be found in only one message or in more than 5 percent of all messages.

After building the word vectors the words are weighted by the “term frequency * inverse document fre-
quency” (tfidf) factor, more specifically weigth = nxIn(msgs/ntot), where n is the number of occurrences
of the word in current message, ntot is the total number of occurrences of the word in all messages and
msgs is the total number of messages. This emphasizes the role of rare keywords. Finally, the word vectors
are normalized to unit length to eliminate the difference between short and long messages.

The criteria of two messages being similar is simply the dot product of their word vectors: the higher
the result the greater the number of shared words (keywords emphasized by the weights) and thus greater
similarity. Duplicates are detected and included only once in the results. Another simple but popular
measure would be the euclidean distance of vectors, in which case the most similar messages would have
the smallest distance between each other.

5.3 Email Specific Issues

The large variety of client software and human habits pose many problems when trying to parse and analyze
email messages. The standards which define the format [4] [5] are rather complex and it is common that
some clients occasionally break the standards.

5.3.1 Encodingsand Attachments

Most messages contain only plain text which can be fed directly to the lexer of the analysis library. Some
mailers use quoted printable encoding to send 8-bit characters as 7-bit data. This is not an issue since
converting back to 8-bit is easy.

Attachments are much more problematic. Binary files and images would not contribute to the textual data,
but quite often also text is sent with special typesetting in html, portable document format (pdf) or even in
a proprietary format such as a Microsoft Word document. This results in some messages or important parts
of them being left completely out of the analysis.

The implementation described in this document identifies MIME attachments but does not try to analyze
any other than plain text, all others are dropped. Unfortunately some mailers don’t even adhere to the
MIME extensions but send attachments uuencoded or binhex encoded inside the body of the message.
These are interpreted as plain text and result in bogus words being added to the vocabulary. This does not
do much harm to the similarity comparisons but makes the vocabulary larger and thus the program run
slower.

5.3.2 Multiple Languagesand Character Sets

Multiple languages are another problem. The language of the message cannot be easily deduced and
therefore it is difficult to know which bytes should be interpreted as alphabetic characters. Currently this
is implemented by C library functions which use the locale settings (LC_CTYPE environment variable)
installed on the machine. This has the disadvantage that messages written in other languages may be
processed incorrectly and words containing special characters to be split in several words.

A more flexible approach could be better: in the majority of languages words could be separated by look-
ing for spaces and punctuation characters. However, several Asian languages would require completely
different processing so solving the problem well would need more work.

Another still far more complicated problem is stemming, finding the base forms of the words. For English
there are free implementations of the Porter stemming algorithm with produces acceptable results* but

4Actually the Bow library implements Porter stemming so it would be easy to add it to this program, but currently it is not used.

many other languages are more difficult. Finnish grammar in particular has a lot of verb forms and suffixes
which are usually added at the end of nouns when one would use a preposition in English. Sometimes
even the base of the word changes a bit. This results in for example “Helsinki” (the capital of Finland),
“Helsinkiin” (to Helsinki), “Helsingissd” (in Helsinki), and “Helsingistd” (from Helsinki) all be counted as
different words. There are working implementations of stemming for Finnish but they are only available
for a licensing fee.

The current implementation accepts the following character sets:

e Uus-ascii
e jS0-8859-*

e windows-125*

Messages using other character sets are not included in the search. In addition to languages which cannot
be written in these character sets, this choice excludes all messages using the universal UTF-8 character
set. UTF-8 is not yet very common in email but becoming more popular because it can be used for any
language. This is a nice property but to build the vocabulary properly the system would have to use some
kind of heuristics to detect the language used in the message.

5.3.3 Quotes, Signaturesand Other Redundant Data

When replying to an email it is customary to quote parts of the original message. This is favorable for
the search, because usually the original message and the reply are about the same topic. The quotes make
them share a large number of words, therefore placing the two messages near each other also in the search
results.

On the other hand, signatures have an undesirable effect. Many authors have their address and perhaps
their favorite short phrase written at the end of every email. Since the signatures are identical, all words in
them show up as matches. This makes the search return texts from the same author as similar even when
the message is about a completely different topic than the one used as the search key.

Itis advisable to separate the signature from the rest of the message using the delimiter “--- “, that is two
dashes, one space and one newline. Signatures using the standard delimiter are easy to strip out®. Still,
many people do not use any delimiter which makes it more difficult to detect their signatures.

Another common type of redundant data are footers which are automatically inserted by a mailing list or a
mail service such as Hotmail. Like the signatures these are relatively complicated to detect automatically.
While footers from a mailing list can sometimes even be useful (two messages from the same list are likely
to be somewhat similar) the advertisements added by mail services only confuse the search — two different
messages from Hotmail which contain the same advertisement are not very likely to have similar content.

6 System Performance

6.1 Test Sets

The system was evaluated using emails received by the author during the last couple of years. The following
test sets were used:

5The current implementation does not try to detect signatures but it would not be difficult to add.

10

Number | Type Number of messages Size (kB)
1 Various personal received messages | 500 2816

2 Various personal received messages | 2500 13676

3 Messages from five mailing lists 2500 (500 from each list) | 8628

4 Messages sent by the author 1000 7648

5 Combination of sets 2, 3 and 4 6000 29952

6 Personal (received + sent) and lists | 20294 80312

7 Personal (received + sent) and lists | 57023 246616

Table 1: Test sets for the search

The mailing lists in set 3 were Bugtraq (computer security related announcements and discussion), Finnish
Linux User Group list (questions and answers to problems related to Linux, announcements of the associa-
tion), NorduGrid list (discussion about Grid software development), Otakut list (discussion about Japanese
animated films) and Finnish Rave Info (club announcements, discussion about parties and electronic mu-
sic).

Most tests were done using the combined set 5. The idea was to simulate a subset of a personal email
archive. The sets 6 and 7 were direct extracts from the author’s old mails directory tree — most of which
is not very nicely organized.

6.2 Relevance of the Retrieved Documents

The similarity of two messages is a highly subjective value. It also depends on the occasion which mes-
sages are the most relevant for the reader. Therefore the evaluation of the system was performed by trying
different parameters for the vocabulary pruning and then performing searches using different source mes-
sages. From the system log it was possible to see which keywords were found in each email included to
the similar messages list and the weights of the words.

Messages belonging to the same thread were usually found as similar because they often contain parts of
each other as exact quotes. Also messages from the same author were emphasized, especially if the author
had a long signature at the end of the message. In the latter category the system often brought up texts from
completely unrelated topics, particularly short messages in which each word has more weight.

The test set 5 (6000 messages) contained a bit over million words in total (headers and binary attachments
excluded), and more importantly 89057 different words. Over half of them were present in only one
message thus giving no input to similarity. Excluding them already reduced the vocabulary to 44195
words. Another 14809 words were present in only two messages. This group contained a lot of words
with typing errors and strange character sequences but also important keywords. Pruning rare words more
aggressively reduced running time but produced inferior results, especially if excluding words present in
more than 3 messages.

On the other hand it was safe to exclude words that were present in more than a few percent of all messages.
This did not significantly reduce the size of vocabulary, for example pruning all words in more than 5% of
the messages resulted in 266 words and those in more than 2% of the messages in 880 words to be dropped.
Cutting aggressively reduced the effect of emphasized signatures (if there were enough messages from one
author his signature was completely ignored), but also excluded important keywords. Most tests were done
dropping the words either in only one message or in more than 5%, giving a vocabulary of 43929 words.

It was clear that the system would benefit from stemming, now matching keywords were not found in many
cases because they had a different ending. In cases of only a few matching words, short messages were
perhaps emphasized a bit too much, sometimes overriding a more relevant longer message. Otherwise the
weighting scheme seemed to have a good balance to emphasize rare words but not ignoring others.

11

Choosing the keywords more intelligently could certainly improve the results, now typing errors and rare
adjectives are in the same category than real keywords. However, despite the described weaknesses the
system seemed to find relevant messages well enough so that it could be helpful in real use.

6.3 Running Time

The performance tests were done on a standard PC equipped with a 350 MHz Pentium Il processor, 256 MB
of memory and 6GB IDE disk. The operating system was Debian GNU/Linux version 3.0, Linux kernel
version 2.2.19. Only a few iterations per test were done and no special precautions were taken to eliminate
caching and other disturbances, so the results presented here should be taken only as rough estimates.

A summary of the results is presented in table 2. When running the dbmai l-organize program, words
were excluded from the vocabulary if they occurred either in only one or in more that 5 % of all messages.
In search commands, several different source messages were used and 20 similar messages were retrieved
in each case. Vocab. is the number of words in the vocabulary after pruning and all times are measured in
seconds.

Set | Msgs | Size | Vocab. Organize First search | Cached search
(kB) user | elapsed | user | elapsed | user | elapsed

1 500 2816 | 7044 8 16 02 |06 0.02 | 0.03

2 2500 | 13676 | 24410 | 32 68 09 |19 0.04 | 0.07

3 2500 | 8628 | 21080 | 21 51 07 |17 0.03 | 0.06

4 1000 | 7648 | 11946 | 10 25 04 |10 0.02 | 0.04

5 6000 | 29952 | 43929 | 64 190 2 4 01 |02

6 20294 | 80312 | 86761 | 220 | 780 7 33 05 |10

Table 2: Running times for different test sets

Running the organizing process for the largest mail set (number 7) turned out to be unreliable. The process-
ing was stopped after running for about 20 minutes — the DBMAIL software seemed to have a problem
extracting the message data from the database for an unknown reason (two separate test cases, different
failures in each). Over half of the processing was already done in both cases and the memory consumption
was about 100 megabytes. Organizing and searching in the test set 6 also required a considerable amount
of memory, about 40 MB.

The elapsed time (wall clock time) was considerably longer than user time (processor time used by the
program) in all cases. The reason is that part of the time was taken by the MySQL database and disk 1/0,
especially with larger message sets. Because the system was not used for other purposes during the test,
the elapsed time is a much more relevant estimate here.

The time in the organizing process is roughly divided in two: building the vocabulary and building the
word vectors. In both phases, all messages are retrieved sequentially from the database and processed. The
rest of the operations (setting weights, normalizing etc.) take only a small portion of the time. The key
factors which affect the performance are the total number of bytes and the number of messages; the latter
one seems to be a bit more decisive. As expected, the time seems to grow roughly linearly compared to the
number of messages.

The theoretical complexity of the search is O(nm), where n is the number of messages and m is the
average length of the word vectors. During the first search, the vocabulary and word vectors are read
from the database in the memory and cached for subsequent searches during the same connection. The
first search is considerably slower than subsequent ones, which shows that the majority of time is used in
reading the vocabulary and word vectors from the database.

12

It should be noted that the time measurements for the cached searches for all datasets varied considerably
(the result in some cases could be half or double of that presented in the table). However, the results for the
first search were more consistent which is the more interesting case when evaluating the usability of the
program.

The performance is adequate for small message archives up to a few dozen megabytes, but with large
collections both the CPU and memory requirements become too high. Because vocabulary and word
vector data are separate for each user, it would be easier for a server to handle several users with a moderate
amount of messages than one user with a large archive®.

6.4 Optimization Possibilities Using a Self-Organizing Map

Self-organizing maps (SOMs) are a technique which can automatically adapt a set of neurons on a two
dimensional plane to approximately match a data set of larger dimension. When the map is organized,
similar input vectors are placed near each other on the map.

This algorithm was examined as one possibility to optimize the search. The idea was to store map coordi-
nates of each message in the database so that the search function would have to look only at messages in
nearby coordinates. The area could be selected efficiently using a single SQL statement. The map could
also be used to visualize the emails as done in the WEBSOM project [22]. Two packages were evaluated:
The SOM Toolbox for Matlab [13] and the SOM_PAK [15] package.

The SOM Toolbox is easy to use and has good visualization capabilities, but it was too slow when using
data vectors of a large dimension. Word vectors of 1000 words from 250 messages took already more than
10 minutes to process on a 800 MHz AMD computer. The number of messages did not seem to be the
problem, the large dimension of the vectors was more difficult.

The SOM_PAK performed fast enough to do some small scale tests. The word vectors of the email test
set 1 (vocabulary 7044 words after pruning) were extracted from the DBMAIL database and maps of size
12 % 8 and 24 x 12 were generated. Then three sets of messages, original and 10 similar ones in each set”,
were plotted on the maps.

Figure 3: Original and 10 similar messages plotted on a self-organizing map.

Most of the messages in each group were placed near each other (see figure 3 for an example), and the
groups on completely different parts of the map. The results on small and big maps were similar in nature:

6An estimate based on knowledge about the algorithm, not actual test results. The system has currently only been quickly tested
with two concurrent users.
"The originals were chosen by hand and the similar messages found using the brute force search.

13

most messages were near each other but a few were placed further away — interestingly in some cases
different messages on the small than on the big map.

Overall, the algoritm seemed to map similar vectors near each other decently, at least in this small set of
messages and three examples. Unfortunately the performance was not adequate for bigger message sets.
The small map for 500 messages took already several minutes to process and the set of 6000 messages was
completely out of reach. Even the data file of the word vectors for the 6000 message set would have been
about 450 megabytes (6.5 MB for the set of 500 messages) because the format accepted by SOM_PAK
contains all the elements of the vectors, most of which are zero. In the Bow format only non-zero elements
are stored.

The WEBSOM system has been used to organize very large text archives. Perhaps some of the advance-
ments and optimizations found in that project or completely different algorithms would be a better choice
to improve the performance of this system too.

7 Conclusions and Future Work

The system described in this paper is an unfinished prototype but it can already be used as a test platform.
After smoothing some rough edges in the implementation it would be interesting to take the system in real
use to see over a few months if it helps even a little bit in managing old email. The performance with large
message archives is probably the biggest currently unsolved issue.

If the system is developed further, the syntax of the XSIMILAR command should be carefully redesigned.
It should not require complex functionality from the client but allow more detailed control for those clients
who wish to use it. The client should be allowed to add it’s own search keywords and limit the list of
retrieved messages using various criteria (e.g. those used in the IMAP SEARCH command). The server
could also offer a way to control the method and parameters used for the organization process from the
client.

There are many opportunities for future research related to language processing. The system provides a
convenient platform to test more advanced algorithms in organizing emails — the message blocks can be
easily retrieved and the database can also be used to neatly and efficiently store the classification data.

The software described in this document can be downloaded from http://wikihip.cern._.ch/twiki/
bin/view/Grid/SimilarEmailSearch.

References

[1] Helsinki Institute of Physics Technology Program. http://www_hip.fi/research/technology/.
[Cited September 23, 2002.]

[2] Internet Engineering Task Force, Network Working Group, 1996. Request for Comments number
1939: Post Office Protocol - Version 3. http://www.isi.edu/in-notes/rfc1939.txt. [Cited
September 23, 2002.]

[3] Internet Engineering Task Force, Network Working Group, 1996. Request for Comments number
2060: The Internet Message Access Protocol - version 4revl. http://www.isi.edu/in-notes/
rfc2060. txt. [Cited September 23, 2002.]

[4] The Internet Society, 2001. Request for Comments number 2822: Internet Message Format. http:
//www . isi.edu/in-notes/rfc2822. txt. [Cited September 23, 2002.]

[5] Internet Engineering Task Force, Network Working Group, 1996. Requests for Comments numbers
2045, 2046, 2047, 2048, 2049: Multipurpose Internet Mail Extensions (MIME). The following page
lists online links and resources to these and related documents: http://www._oac.uci.edu/indiv/
ehood/MIME/MIME . html. [Cited September 23, 2002.]

14

[6] Open Source Initiative, 2002. The Open Source Definition, version 1.9. http://www.opensource.
org/docs/definition.php. [Cited September 23, 2002.]

[7] DBMAIL, a group of programs for storing and retrieving email in a SQL database. http://www.
dbmai I .org. [Cited September 23, 2002.]

[8] GNU General Public License, version 2, June 1991. http://www.gnu.org/licenses/gpl.html.
[Cited September 23, 2002.]

[9] McCallum, Andrew Kachites, 1996. Bow: A toolkit for statistical language modeling, text re-
trieval, classification and clustering. http://www.cs.cmu.edu/~mccal lum/bow/. [Cited September
23,2002.]

[10] GNU Library General Public License, version 2, June 1991. http://www.gnu.org/licenses/
Igpl.html. [Cited September 23, 2002.]

[11] The Mutt E-Mail Client. http://www.mutt.org. [Cited September 23, 2002.]

[12] Kohonen, T.; Huang, T. S. (Editor); Schroeder, M. R. (Editor). 2001. Self-Organizing Maps (Springer
Series in Information Sciences, 30). 3.p. Springer Verlag. ISBN 3540679219.

[13] SOM Toolbox for Matlab. http://www.cis.hut.fi/projects/somtoolbox/. [Cited September
23,2002.]

[14] Matlab software. http://www._mathworks.com/products/matlab/ [Cited September 23, 2002.]

[15] SOM_PAK - The Self-Organizing Map Program Package. http://ww.cis.hut.fi/research/
som_lvqg_pak.shtml. [Cited September 23, 2002.]

[16] Helsinki Institute of Physics, 2002. Metadata Visualisation Project. http://mdv.sourceforge.net.
[Cited September 23, 2002.]

[17] The BSD License. http://www.opensource.org/licenses/bsd-license.php. [Cited Septem-
ber 23, 2002.]

[18] The CMU-Cambridge Statistical Language Modeling Toolkit. http://svr-www.eng.cam.ac.uk/
~prcl4/toolkit.html. [Cited September 23, 2002.]

[19] GATE - General Architecture for Text Engineering. http://gate.ac.uk/. [Cited September 23,
2002.]

[20] Ifile mail filtering system. http://www.ai.mit.edu/~jrennie/ifile/. [Cited September 23,
2002.]

[21] OpenNLP, an organizational center for open source projects related to natural language processing.
http://opennlp.sourceforge.net/. [Cited September 23, 2002.]

[22] WEBSOM - Self-Organizing Maps for Internet Exploration. http://websom.hut.fi/websom/.
[Cited September 23, 2002.]

[23] MySQL database. http://www.mysql .com/. [Cited September 27, 2002.]

[24] Jurafsky, D.; Martin, J. 2000. Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics and Speech Recognition. 1.p. Prentice Hall. 960 s. ISBN
0130950696.

15

